## K<sub>2</sub>FeO<sub>4</sub>的制备、表征及其电化学性能

周震涛、廖宗友

(华南理工大学材料学院,广东广州 510640)

摘要:高产率制备  $K_2FeO_4$  以及考察用其制作碱性  $Zn/K_2FeO_4$  模拟电池的电性能。以 KCIO、 $Fe(NO_3)_3$  为原料,用氧化法制备  $K_2FeO_4$ ,研究了反应温度、反应时间以及 KCIO 与  $Fe(NO_3)_3$  物质的量比等因素对  $K_2FeO_4$  产率的影响;用红外光谱对产物进行了分析表征;还测试了碱性  $Zn/K_2FeO_4$  模拟电池的电性能。研究结果表明:在饱和的 KOH 体系下控制反应温度为  $30^{\circ}$ C,反应时间为 90min,KCIO 与  $Fe(NO_3)_3$  的物质的量比为 1.5:1.0 时制备  $K_2FeO_4$  可得到最佳产率;红外光谱的分析证实,所得产物的主要成分是  $K_2FeO_4$ ;碱性  $Zn/K_2FeO_4$  模拟电池的电性能与碱性  $Zn/K_2FeO_4$  模拟电池的电性能与碱性  $Zn/K_2FeO_4$  模拟电池的电性能与碱性  $Zn/K_2FeO_4$  模拟电池的电性能与磁性  $Zn/K_2FeO_4$  模拟电池的电比容量比  $Zn/K_2FeO_4$  模拟电池的电性能与磁性  $Zn/K_2FeO_4$  模拟电池的电比容量比  $Zn/K_2FeO_4$  模拟电池的电比容量比  $Zn/K_2FeO_4$  模拟电池的电比容量比  $Zn/K_2FeO_4$  模拟电池的电线更平稳, $Zn/K_2FeO_4$  的放电比容量比  $Zn/K_2FeO_4$  的

关键词: 高铁酸钾; 制备; 正极材料

中图分类号: TM912.9 文献标识码: A 文章编号: 1001-1579(2004)01-0019-03

## Preparation and characterization of

## K<sub>2</sub>FeO<sub>4</sub> and its electrochemical performance

ZHOU Zhen-tao, LIAO Zong-you

(Institute of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China)

**Abstract:** In order to synthesize  $K_1FeO_4$  effectively and study electrochemical performance of alkaline  $Zn/K_2FeO_4$  experimental battery,  $K_2FeO_4$  was prepared by using KClO to oxidize  $Fe(NO_3)_3$ . The effects of reaction temperature, reaction time and the molar ratio of KClO to  $Fe(NO_3)_3$  on the productivity of  $K_2FeO_4$  were studied. The results showed that the best  $K_2FeO_4$  productivity could be obtained under the saturated KOH solution, the reaction temperature was  $30^{\circ}C$ , reaction time was 90min and the molar ratio of KClO to  $Fe(NO_3)_3$  was 1.5 : 1.0. The IR spectroscopy result confirmed that the major component of the product was  $K_2FeO_4$ . Alkaline  $Zn/K_2FeO_4$  experimental battery showed a steady discharge curve and its average discharge potential and open-circuit potential was 1.42V and 1.72V compared with 1.2V and 1.5V of the  $Zn/MnO_2$  experimental battery, and  $K_2FeO_4$  cathode could get 48.7% more specific capacity than  $MnO_2$ .

Key words: potassium ferrate; preparation; cathode material